了解mutex技术在数据库中的应用及优势 (mutex 数据库)

在数据库的应用中,严谨的数据管理是成功的关键。数据库的数据访问控制极其重要,因为它可以确保其中的数据完整性、安全性和准确性。但是,在实际数据库系统中,多个程序或用户同时访问数据库成为了一个普遍存在的问题,这也使得数据的访问变得更为复杂。为了在这种情况下维护数据的安全,数据库开发人员使用一种特殊的同步方法,称为mutex(互斥体)。本文将介绍mutex技术和其在数据库中的应用及优势。

什么是Mutex技术?

在计算机科学中,mutex是一种简单的同步方法,具有互斥性质。在计算机体系结构中,当多个线程共享同一个资源时,互斥体防止多个线程同时访问该资源。通过使用这种同步方法,开发人员可以防止多个线程同时修改共享数据。Mutex相当于一个修改属性,并且只能有一个线程可以访问该属性。当访问者宣布其修改完成时,属性才可以由其他访问者访问。

在数据库中,mutex的主要作用是确保数据的一致性。它控制对共享数据库的并发访问,这对于处理同时进行的多用户操作很有用。即使在数据库操作的高负载情况下,mutex技术也可以确保数据安全地更新,而不造成数据冲突或丢失。

Mutex在数据库中的应用

在数据库中,mutex经常用于以下几种情况。

1. 锁定文件和锁定数据

在数据库中,互斥体通常用于锁定文件和数据,以便某些操作在同一时刻只能由一个单独的用户执行。在这种情况下,只要互斥体被加锁,其它的请求方就会被阻塞,直到互斥体释放锁定。这种锁定技术为数据库的多用户操作提供了非常重要的保证,可以最小化数据竞争。

2. 管理并发访问

多个用户访问同一件事物时,会引发并发访问的问题。例如,如果一个顾客在购物车中更改了数量,另一个顾客尝试购买相同的项目,从而导致数据冲突。使用mutex技术,只有一个线程可以访问数据,即使有多个用户同时想要更改数据。 mutex方法可以确保只有一个用户可以修改数据库。

3. 避免进程间的崩溃

在数据库中,使用互斥体还可以避免进程间的崩溃。如果一个进程在读取或写入数据时意外崩溃,其他线程不会受到影响,因为所有与互斥体有关的操作都是原子操作。互斥体可以帮助保护数据库,即使在崩溃的情况下,数据也不会丢失。

4. 控制死锁

死锁是数据库中最常见的问题之一。它是指一组正在等待对方释放的资源的进程,无法向前运行。在这种情况下,互斥体可以帮助避免死锁。通过控制运行时的进程操作,可以最小化这种情况,从而提高数据库的可用性。

Mutex的优势

使用互斥体提供了许多优势,这些优势是数据库管理人员不能忽视的。以下是mutex技术的几个主要优势。

1. 提高数据库的安全性

使用互斥体可以提高数据库的安全性,因为它可以防止多个线程同时访问数据库。在这种情况下,互斥体确保只有一个用户可以访问数据库,以便数据能够正确地更新。这种技术可以保护数据的安全性和完整性,防止数据的修改或泄漏。

2. 提高数据库的性能

互斥体还可以提高数据库的性能。通过控制并发访问,可以避免性能下降和数据冲突。互斥体确保每个线程在适当的时候才能访问共享数据(即同时),以避免竞争和锁定等问题。这种技术可以更大限度地提高数据库的处理速度,并优化数据库操作的整体性能。

3. 简化数据库管理

互斥体技术还可以简化数据库管理。通过使用这种技术,数据库管理员可以确保数据的一致性,而不必担心多个用户之间的数据竞争。管理员可以专注于其他数据管理任务,而无需担心数据库访问的一致性问题。

结论

在实际的数据库操作中,mutex技术成为了确保数据安全的一种普遍方法。通过使用互斥体,可以更大程度地提高数据库的安全性,性能和可靠性。这种技术可以帮助防止数据竞争和死锁等问题,并简化数据库管理。对于正在处理大量数据的组织和企业,应该了解和使用这种技术,以确保数据的安全性和正确性。

相关问题拓展阅读:

深入解析Python中的线程同步方法

深入解析Python中的线程同步方法

同步访问共享资源

在使用线程的时候,一个很重要的问题是要避免多个线程对同一变量或其丛陪它资源的访问冲突。一旦你稍不留神,重叠访问、在多个线程中修改(共享资源)等这些操作会导致各种各样的问题;更严重的是,这些问题一般只会在比较极端(比如高并发、生产服务器、甚至在性能更好的硬件设备上)的情况下才会出现。

比如有这样一个情况:需要追踪对一事件处理的次卜唯数

counter = 0

def process_item(item):

global counter

… do something with item …

counter += 1

如果你在多个线程中同时调用这个函数,你会发现counter的值不是那么准确。在大多数情况下它是对的,但有时它会比实际的少几个。

出现这种情况的原因是,计数增加操作实际上分三步执行:

解释器获取counter的当前值计算新值将计算的新值回写counter变量

考虑一下这种情况:在当前线程获取到counter值后,另一个线程抢占到了CPU,然后同样也获取到了counter值,并进一步将counter值重新计算并完成回写;之后时间片重新轮到当前线程(这里仅作标识区分,并非实际当前),此时当前线程获取到counter值还是原来的,完成后续两步操作后counter的值实际只加上1。

另一种常见情况是访问不完整或不一致状态。这类情况主要发生在一个线程正在初始化或更新数据时,另一个进程却尝试读取正在更改的数据。

原子操作

实现对共享变量或其它资源的同步访问最简单的方法是依靠解释器的原子操作。原子操作是在一步完成执行的操作,在这一步中其它线程无法获得该共享资源。

通常情况下,这种同步方法只对那些只由单个核心数据类型组成的共享资源有效,譬如,字符串变量、数字、列表或者字典等。下面是几个线程安全的操作:

读或者替换一个实例属性读或者替换一个全局变量从列表中获取一项元素原位修改一个列表(例如:使用append增加一个列表项)从字典中获取一项元素原位修改一个字典(例如:增加一个字典项、调用clear方法)

注意,上面提到过,对一个变量或渗弊蠢者属性进行读操作,然后修改它,最终将其回写不是线程安全的。因为另外一个线程会在这个线程读完却没有修改或回写完成之前更改这个共享变量/属性。

锁是Python的threading模块提供的最基本的同步机制。在任一时刻,一个锁对象可能被一个线程获取,或者不被任何线程获取。如果一个线程尝试去获取一个已经被另一个线程获取到的锁对象,那么这个想要获取锁对象的线程只能暂时终止执行直到锁对象被另一个线程释放掉。

锁通常被用来实现对共享资源的同步访问。为每一个共享资源创建一个Lock对象,当你需要访问该资源时,调用acquire方法来获取锁对象(如果其它线程已经获得了该锁,则当前线程需等待其被释放),待资源访问完后,再调用release方法释放锁:

lock = Lock()

lock.acquire() #: will block if lock is already held

… access shared resource

lock.release()

注意,即使在访问共享资源的过程中出错了也应该释放锁,可以用try-finally来达到这一目的:

lock.acquire()

try:

… access shared resource

finally:

lock.release() #: release lock, no matter what

在Python 2.5及以后的版本中,你可以使用with语句。在使用锁的时候,with语句会在进入语句块之前自动的获取到该锁对象,然后在语句块执行完成后自动释放掉锁:

from __future__ import with_statement #: 2.5 only

with lock:

… access shared resource

acquire方法带一个可选的等待标识,它可用于设定当有其它线程占有锁时是否阻塞。如果你将其值设为False,那么acquire方法将不再阻塞,只是如果该锁被占有时它会返回False:

if not lock.acquire(False):

… 锁资源失败

else:

try:

… access shared resource

finally:

lock.release()

你可以使用locked方法来检查一个锁对象是否已被获取,注意不能用该方法来判断调用acquire方法时是否会阻塞,因为在locked方法调用完成到下一条语句(比如acquire)执行之间该锁有可能被其它线程占有。

if not lock.locked():

#: 其它线程可能在下一条语句执行之前占有了该锁

lock.acquire() #: 可能会阻塞

简单锁的缺点

标准的锁对象并不关心当前是哪个线程占有了该锁;如果该锁已经被占有了,那么任何其它尝试获取该锁的线程都会被阻塞,即使是占有锁的这个线程。考虑一下下面这个例子:

lock = threading.Lock()

def get_first_part():

lock.acquire()

try:

… 从共享对象中获取之一部分数据

finally:

lock.release()

return data

def get_second_part():

lock.acquire()

try:

… 从共享对象中获取第二部分数据

finally:

lock.release()

return data

示例中,我们有一个共享资源,有两个分别取这个共享资源之一部分和第二部分的函数。两个访问函数都使用了锁来确保在获取数据时没有其它线程修改对应的共享数据。

现在,如果我们想添加第三个函数来获取两个部分的数据,我们将会陷入泥潭。一个简单的方法是依次调用这两个函数,然后返回结合的结果:

def get_both_parts():

first = get_first_part()

seconde = get_second_part()

return first, second

这里的问题是,如有某个线程在两个函数调用之间修改了共享资源,那么我们最终会得到不一致的数据。最明显的解决方法是在这个函数中也使用lock:

def get_both_parts():

lock.acquire()

try:

first = get_first_part()

seconde = get_second_part()

finally:

lock.release()

return first, second

然而,这是不可行的。里面的两个访问函数将会阻塞,因为外层语句已经占有了该锁。为了解决这个问题,你可以通过使用标记在访问函数中让外层语句释放锁,但这样容易失去控制并导致出错。幸运的是,threading模块包含了一个更加实用的锁实现:re-entrant锁。

Re-Entrant Locks (RLock)

RLock类是简单锁的另一个版本,它的特点在于,同一个锁对象只有在被其它的线程占有时尝试获取才会发生阻塞;而简单锁在同一个线程中同时只能被占有一次。如果当前线程已经占有了某个RLock锁对象,那么当前线程仍能再次获取到该RLock锁对象。

lock = threading.Lock()

lock.acquire()

lock.acquire() #: 这里将会阻塞

lock = threading.RLock()

lock.acquire()

lock.acquire() #: 这里不会发生阻塞

RLock的主要作用是解决嵌套访问共享资源的问题,就像前面描述的示例。要想解决前面示例中的问题,我们只需要将Lock换为RLock对象,这样嵌套调用也会OK.

lock = threading.RLock()

def get_first_part():

… see above

def get_second_part():

… see above

def get_both_parts():

… see above

这样既可以单独访问两部分数据也可以一次访问两部分数据而不会被锁阻塞或者获得不一致的数据。

注意RLock会追踪递归层级,因此记得在acquire后进行release操作。

Semaphores

信号量是一个更高级的锁机制。信号量内部有一个计数器而不像锁对象内部有锁标识,而且只有当占用信号量的线程数超过信号量时线程才阻塞。这允许了多个线程可以同时访问相同的代码区。

semaphore = threading.BoundedSemaphore()

semaphore.acquire() #: counter减小

… 访问共享资源

semaphore.release() #: counter增大

当信号量被获取的时候,计数器减小;当信号量被释放的时候,计数器增大。当获取信号量的时候,如果计数器值为0,则该进程将阻塞。当某一信号量被释放,counter值增加为1时,被阻塞的线程(如果有的话)中会有一个得以继续运行。

信号量通常被用来限制对容量有限的资源的访问,比如一个网络连接或者数据库服务器。在这类场景中,只需要将计数器初始化为更大值,信号量的实现将为你完成剩下的事情。

max_connections = 10

semaphore = threading.BoundedSemaphore(max_connections)

如果你不传任何初始化参数,计数器的值会被初始化为1.

Python的threading模块提供了两种信号量实现。Semaphore类提供了一个无限大小的信号量,你可以调用release任意次来增大计数器的值。为了避免错误出现,更好使用BoundedSemaphore类,这样当你调用release的次数大于acquire次数时程序会出错提醒。

线程同步

锁可以用在线程间的同步上。threading模块包含了一些用于线程间同步的类。

Events

一个事件是一个简单的同步对象,事件表示为一个内部标识(internal flag),线程等待这个标识被其它线程设定,或者自己设定、清除这个标识。

event = threading.Event()

#: 一个客户端线程等待flag被设定

event.wait()

#: 服务端线程设置或者清除flag

event.set()

event.clear()

一旦标识被设定,wait方法就不做任何处理(不会阻塞),当标识被清除时,wait将被阻塞直至其被重新设定。任意数量的线程可能会等待同一个事件。

Conditions

条件是事件对象的高级版本。条件表现为程序中的某种状态改变,线程可以等待给定条件或者条件发生的信号。

下面是一个简单的生产者/消费者实例。首先你需要创建一个条件对象:

#: 表示一个资源的附属项

condition = threading.Condition()

生产者线程在通知消费者线程有新生成资源之前需要获得条件:

#: 生产者线程

… 生产资源项

condition.acquire()

… 将资源项添加到资源中

condition.notify() #: 发出有可用资源的信号

condition.release()

消费者必须获取条件(以及相关联的锁),然后尝试从资源中获取资源项:

#: 消费者线程

condition.acquire()

while True:

…从资源中获取资源项

if item:

break

condition.wait() #: 休眠,直至有新的资源

condition.release()

… 处理资源

wait方法释放了锁,然后将当前线程阻塞,直到有其它线程调用了同一条件对象的notify或者notifyAll方法,然后又重新拿到锁。如果同时有多个线程在等待,那么notify方法只会唤醒其中的一个线程,而notifyAll则会唤醒全部线程。

为了避免在wait方法处阻塞,你可以传入一个超时参数,一个以秒为单位的浮点数。如果设置了超时参数,wait将会在指定时间返回,即使notify没被调用。一旦使用了超时,你必须检查资源来确定发生了什么。

注意,条件对象关联着一个锁,你必须在访问条件之前获取这个锁;同样的,你必须在完成对条件的访问时释放这个锁。在生产代码中,你应该使用try-finally或者with.

可以通过将锁对象作为条件构造函数的参数来让条件关联一个已经存在的锁,这可以实现多个条件公用一个资源:

lock = threading.RLock()

condition_1 = threading.Condition(lock)

condition_2 = threading.Condition(lock)

互斥锁同步

我们先来看一个例子:

#!/usr/bin/env python

# -*- coding: utf-8 -*-

import time, threading

# 假定这是你的银行存款:

balance = 0

muxlock = threading.Lock()

def change_it(n):

# 先存后取,结果应该为0:

global balance

balance = balance + n

balance = balance – n

def run_thread(n):

# 循环次数一旦多起来,最后的数字就变成非0

for i in range(100000):

change_it(n)

t1 = threading.Thread(target=run_thread, args=(5,))

t2 = threading.Thread(target=run_thread, args=(8,))

t3 = threading.Thread(target=run_thread, args=(9,))

t1.start()

t2.start()

t3.start()

t1.join()

t2.join()

t3.join()

print balance

结果 :

$ python multhread_threading.py

$ python multhread_threading.py

$ python multhread_threading.py

$ python multhread_threading.py

上面的例子引出了多线程编程的最常见问题:数据共享。当多个线程都修改某一个共享数据的时候,需要进行同步控制。

线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁。互斥锁为资源引入一个状态:锁定/非锁定。某个线程要更改共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性。

threading模块中定义了Lock类,可以方便的处理锁定:

#创建锁mutex = threading.Lock()

#锁定mutex.acquire()

#释放mutex.release()

其中,锁定方法acquire可以有一个超时时间的可选参数timeout。如果设定了timeout,则在超时后通过返回值可以判断是否得到了锁,从而可以进行一些其他的处理。

使用互斥锁实现上面的例子的代码如下:

balance = 0

muxlock = threading.Lock()

def change_it(n):

# 获取锁,确保只有一个线程操作这个数

muxlock.acquire()

global balance

balance = balance + n

balance = balance – n

# 释放锁,给其他被阻塞的线程继续操作

muxlock.release()

def run_thread(n):

for i in range(10000):

change_it(n)

加锁后的结果,就能确保数据正确:

$ python multhread_threading.py

$ python multhread_threading.py

$ python multhread_threading.py

mutex 数据库的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于mutex 数据库,了解mutex技术在数据库中的应用及优势,深入解析Python中的线程同步方法的信息别忘了在本站进行查找喔。

来源地址:了解mutex技术在数据库中的应用及优势 (mutex 数据库)

转载声明:本站文章若无特别说明,皆为原创,转载请注明来源:www.88531.cn资享网,谢谢!^^

© 版权声明
THE END
喜欢就支持一下吧
点赞31 分享