归档

亲测资源
AD:【腾讯云服务器大降价】2核4G222元/3年1核2G38元/年

高质量数据库培训班 精准提升技能 (数据库培训班)

随着互联网的不断发展和普及,数据管理的重要性日益凸显。而数据库作为数据管理的核心技术之一,其在现代社会中的重要性与日俱增。然而,针对数据库这项技术的专业性要求也越来越高,普通的自学已经难以满足实际需求。因此,参加高质量的数据库培训班成为了现在数据从业者必不可少的一种提升技能的方式。本文将以“”为题,分析数据库培训班的优点以及如何选择一家高质量的培训机构。

一、数据库培训班的优点

1.专业性强

数据库作为一门技术学科,难度较大,需要掌握的知识点也较多。而参加数据库培训班可以帮助学员解决自学中遇到的难点和疑惑,更快更全面地掌握相关知识。同时,培训机构的老师是从业多年的专业人士,能够提供更有针对性的学习建议和指导。

2.参与度高

参加培训班可以获得更多的机会和平台来学习、练习和交流,从而增强学员的参与度和学习效果。在培训班中,学员可以与老师和同学们分享自己的经验和问题,并在此基础上寻求更好的解决方案。此外,一些培训班还提供线下实验室的机会,供学员进行实际操作,进一步加深了学习效果。

3.就业机会多

现在的企业对数据库技术人才的需求不断增加,而参加正规的数据库培训班可以获得更多的机会接触到用人单位,从而增加自己找到工作的机会。此外,一些知名的数据库培训机构也会提供更多的就业推荐机会,帮助学员尽早进入工作状态。

二、如何选择高质量的数据库培训机构

1.考察机构资质

选择一家高质量的数据库培训机构,首先需要考察机构的资质。可以通过查询培训机构的官方网站、相关机构认证网站等途径,以确保机构取得了相应的资质认证。

2.考察师资力量

一位优秀的老师可以在很大程度上决定学生的学习效果,因此在选择数据库培训机构时,重要的一点是考察机构的师资力量。需要注意的是,不同机构的师资力量存在着一定的差异,而一些知名机构的老师通常具备较高的理论、实践水平,可以带来更优质的培训效果。

3.考察培训课程

不同的培训机构的课程设置和内容也会存在差异,因此在选择高质量的数据库培训机构的过程中,还需要考察其培训的具体课程和内容。一些较好的培训机构,通常会根据学员的不同需求,提供多样化的课程设置,让学员能够选择适合自己的课程。

4.考察口碑和评价

选择一家高质量的数据库培训机构,还需要考察它的口碑和评价。可以通过与其他学员的交流、查阅网络上的相关评价等方式来了解一家咨询机构的具体情况,从而更好地进行选择。

参加高质量的数据库培训班可以帮助我们更好地掌握数据库相关知识,提升自己的职业水平和竞争力。而选择一家高质量的培训机构也是非常重要的,需要结合个人需求和自身情况,做出更加明智的选择。

相关问题拓展阅读:

大数据在哪儿学比较好?

大数据的基础知识,自己去买本书就可以学。现在是扰世简大数据时代,有返迹很多介绍的大数据的书。而且大数据的缓裤技术,如数据采集,数据存取,模型预测,结果呈现等都比较好学。

想要都进入大数据行业的之一步,是先搞清楚大数据究竟有哪些就业方向。

大数据就业岗位

随着大数据技术在企业界如火如荼的实践,企业对组建大数据团队的迫切程度也也来越高,对与大数据相关高端人才的需求也扰判越来越紧迫,但企业对大数据团队的组建和角色分配方面缺一直有不小的困惑余银,到底大数据团队里应该拥有哪些几类角色,如何设置岗位?同一类别的角色的专业方向又有哪些分化,不同专业的岗位对技能应该有哪些要求?如何管理大数据团队成员的职业发展路径?为此,ChinaHadoop花费了一年时间调研了先进企业内部设立的大数据部门或团队的组织结构和职能划分,在此基础上,首次提出了企业大数据团队的岗位划分,专业分类及定义,以及每个岗位所需的技能及培训,技能考核对应的能力级别,我们将之统称为”企业大数据人才岗位技能认证体系“。

通过对企业大数据人才岗位进行专业细分,岗位技能认证等级与企业现有技术专业通道形成对应关系,打通员工的职业发展通道,帮助企业逐步完善大数据团队的组织结构,不断提高团队技能,为各岗位及时储备人才。

大数据团队的角色分类企业大数据团队的角色分类主要有三个大类别:大数据开发工程师、大数据运维工程师、大数据架构师。总体而言,我们缓毁改大数据人才划分为三个大类:

一、 大数据开发工程师:围绕大数据系平台系统级的研发人员, 熟练Hadoop、Spark、Storm等主流大数据平台的核心框架。深入掌握如何编写MapReduce的作业及作业流的管理完成对数据的计算,并能够使用Hadoop提供的通用算法,

熟练掌握Hadoop整个生态系统的组件如: Yarn,HBase、Hive、Pig等重要组件,能够实现对平台监控、辅助运维系统的开发。通过学习一系列面向开发者的Hadoop、Spark等大数据平台开发技术,掌握设计开发大数据系统或平台的工具和技能,能够从事分布式计算框架如Hadoop、Spark群集环境的部署、开发和管理工作,如性能改进、功能扩展、故障分析等。

二、 大数据运维工程师:了解Hadoop、Spark、Storm等主流大数据平台的核心框架,熟悉Hadoop的核心组件:HDFS、MapReduce、Yarn;具备大数据集群环境的资源配置,如网络要求、硬件配置、系统搭建。熟悉各种大数据平台的部署方式,集群搭建,故障诊断、日常维护、性能优化,同时负责平台上的数据采集、数据清洗、数据存储,数据维护及优化。熟练使用Flume、Sqoop等工具将外部数据加载进入大数据平台,通过管理工具分配集群资源实现多用户协同使用集群资源。

三、 大数据架构师:这一角色的要求是综合型的,对各种开源和商用的大数据系统平台和产品的特点非常熟悉,能基于Hadoop、Spark、 NoSQL、 Storm流式计算、分布式存储等主流大数据技术进行平台架构设计,负责企业选用软件产品的技术选型,具体项目中的数据库设计及实现工作,协助开发人员完成数据库部分的程序 ,能解决公司软件产品或者项目开发和运维中与数据库相关的问题; 及时解决项目开发或产品研发中的技术难题,对设计系统的最终性能和稳定性负责。

岗位能力级别定义:1. 初级:具备基本的大数据技术的基础知识,可以将其视为大数据认证的初学或者入门等级。2. 高级:大数据认证的高级或者熟练等级,表明该人才具备大数据某一专业方向的基本知识和熟练技能。3. 专家:具有业界公认的专业大数据技术知识和丰富工作经验。

这里简单介绍几种我认为用的比较多的技术

一、Hadoop

可以说,hadoop几乎已经是大数据代名词。无论是是否赞成,hadoop已经是大部分企业的大数据标准。得益于Hadoop生态圈,从现在来看,还没有什么技术能够动摇hadoop的地位。

这一块可以按照一下内容来学习:

1、Hadoop产生背景 2、Hadoop在大数据、云计算中的位置和关系 3、国内外Hadoop应用案例介绍 4、国内Hadoop的就业情况分析及课程大纲介绍 5、分布式系统概述 6、Hadoop生态圈以及各组成部分的简介

二、分布式文件系统HDFS

HDFS全称 Hadoop Distributed File System ,它是一个高度容错性的系统,适合部署在廉价的机器上,同时能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。为了实现流式读取文件系统数据的目的,HDFS放宽了一部分POSIX约束。

1、分布式文件系统HDFS简介 2、HDFS的系统组成介绍 3、HDFS的组成部分详解 4、副本存放策略及路由规则 5、NameNode Federation 6、命令行接口 7、Java接口 8、客户端与HDFS的数据流讲解 9、HDFS的可用性(HA)

三、初级MapReduce

这是你成为Hadoop开发人员的基础课程。

MapReduce提供了以下的主要功能:

1)数据划分和计算任务调度:

2)数据/代码互定位:

3)系统优化:

4)出错检测和恢复:

这种编程模型主要用于大规模数据集(大于1TB)的并行运算。

1、如何理解map、reduce计算模型 2、剖析伪分布式下MapReduce作业的执行过程 3、Yarn模型 4、序列化 5、MapReduce的类型与格式 6、MapReduce开发环境搭建 7、MapReduce应用开发 8、熟悉MapReduce算法原理

四、高级MapReduce

这一块主要是高级Hadoop开发的技能,都是MapReduce为什么我要分开写呢?因为我真的不觉得谁能直接上手就把MapReduce搞得清清楚楚。

1、使用压缩分隔减少输入规模 2、利用Combiner减少中间数据 3、编写Partitioner优化负载均衡 4、如何自定义排序规则 5、如何自定义分组规则 6、MapReduce优化

五、Hadoop集群与管理

这里会涉及到一些比较高级的数据库管理知识,乍看之下都是操作性的内容,但是做成容易,做好非常难。

1、Hadoop集群的搭建 2、Hadoop集群的监控 3、Hadoop集群的管理 4、集群下运行MapReduce程序

六、ZooKeeper基础知识

ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。

1、ZooKeeper体现结构 2、ZooKeeper集群的安装 3、操作ZooKeeper

七、HBase基础知识

HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。

与FUJITSU Cliq等商用大数据产品不同,HBase是Google Bigtable的开源实现,类似Google Bigtable利用GFS作为其文件存储系统,HBase利用Hadoop HDFS作为其文件存储系统;Google运行MapReduce来处理Bigtable中的海量数据,HBase同样利用Hadoop MapReduce来处理HBase中的海量数据;Google Bigtable利用 Chubby作为协同服务,HBase利用Zookeeper作为对应。

1、HBase定义 2、HBase与RDBMS的对比 3、数据模型 4、系统架构 5、HBase上的MapReduce 6、表的设计

八、HBase集群及其管理

1、集群的搭建过程 2、集群的监控 3、集群的管理

十、Pig基础知识

Pig是进行Hadoop计算的另一种框架,是一个高级过程语言,适合于使用 Hadoop 和 MapReduce 平台来查询大型半结构化数据集。通过允许对分布式数据集进行类似 SQL 的查询,Pig 可以简化 Hadoop 的使用。

1、Pig概述 2、安装Pig 3、使用Pig完成手机流量统计业务

十一、Hive

hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用。

1、数据仓库基础知识 2、Hive定义 3、Hive体系结构简介 4、Hive集群 5、客户端简介 6、HiveQL定义 7、HiveQL与SQL的比较 8、数据类型 9、表与表分区概念 10、表的操作与CLI客户端 11、数据导入与CLI客户端 12、查询数据与CLI客户端 13、数据的连接与CLI客户端 14、用户自定义函数(UDF)

十二、Sqoop

Sqoop(发音:skup)是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql…)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

1、配置Sqoop 2、使用Sqoop把数据从MySQL导入到HDFS中 3、使用Sqoop把数据从HDFS导出到MySQL中

十三、Storm

Storm为分布式实时计算提供了一组通用原语,可被用于“流处理”之中,实时处理消息并更新数据库。这是管理队列及工作者集群的另一种方式。 Storm也可被用于“连续计算”(continuous computation),对数据流做连续查询,在计算时就将结果以流的形式输出给用户。它还可被用于“分布式RPC”,以并行的方式运行昂贵的运算。

1、Storm基础知识:包括Storm的基本概念和Storm应用 场景,体系结构与基本原理,Storm和Hadoop的对比 2、Storm集群搭建:详细讲述Storm集群的安装和安装时常见问题 3、Storm组件介绍: spout、bolt、stream groupings等 4、Storm消息可靠性:消息失败的重发 5、Hadoop 2.0和Storm的整合:Storm on YARN 6、Storm编程实战

一般来说大数据这样的专业是北上广深1线城市迅兄比较好,选择培训机构的时候你可以深入了解一下机构的口碑、师资、就业、课渗昌迟程、费用等等方面的情况,重点丛李是口碑,多对比几家机构,希望你能找到好的大数据培训学校。

大数据这个专业当然是在首都学习更好。因为在那儿你遇到真正的神级大数据讲师的概率会大幅提高。

大数据培训到底是培训什么

可以参考一下以道教育的课程体系

之一阶段 WEB 开发基础

HTML基础

1、Html基本介绍

2、HTML语法规范

3、基本标签介绍

4、HTML编辑器/文本文档/WebStrom/elipse

5、HTML元素和属性

6、基本的HTML元素

6.1 标题

6.2 段落

6.3 样式和style属性

6.3 链接 a

6.4 图像 img

6.5 表格 table

6.6 列表 ul/ol/dl

7、 HTML注释

8、表单介绍

9、Table标签

10、DIV布局介绍

11、HTML列表详解

HTML布局和Bootstrap

1、 HTML块元素(block)和行内元素(inline)

2、使用div实现网页布局

3、响应式WEB设计(Responsive Web Design)

4、使用bootstrap实现响应式布局

HTML表单元素

1、HTML表单 form

2、HTML表单元素

3、 HTML input的类型 type

4、 Html input的属性

CSS基础

1、CSS简介及基本语法

2、在HTML文档中使用CSS

3、CSS样式

4、CSS选择器

5、盒子模型

6、布局及定位

CSS高级/CSS3

1、尺寸和对齐

2、分类(clear/cursor/display/float/position/visibility)

3、导航栏

4、图片库

5、图片透明

6、媒介类型 @media

7、CSS3

8、CSS3动画效果

JavaScript基础

1、JavaScript简介

2、基本语法规则

3、在HTML文档中使用

4、变量

5、数据类型

6、函数

7、运算符

8、流程控制

9、错误和调试

JavaScript对象和作用域

1、数字 Number

2、字符串String

3、日期 Date

4、数组

5、数学 Math

6、DOM对象和事件

7、BOM对象

8、Window对象

9、作用域和作用域链

10、ON

Javascript库

1、Jquery

2、Prototype

3、Ext Js

Jquery

1、Jquery基本语法

2、Jquery选择器

3、Jquery事件

4、Jquery选择器

5、Jquery效果和动画

6、使用Jquery操作HTML和DOM

7、Jquery遍历

8、Jquery封装函数

9、Jquery案例

表单验证和Jquery Validate

1、用Js对HTML表单进行验证

2、Jquery Validata基本用法

3、默认校验规则和提示信息

4、debug和ignore

5、更改错误信息显示位置和样式

6、全部校验通过后的执行函数

7、修改验证触发方式

8、异步验证

9、自定义校验方法

10、radio 和 checkbox、select 的验证

Java基础

1、关于Java

2、Java运行机制

3、之一个Java程序,注释

4、Javac,Java,Javadoc等命令

5、标识符与关键字

6、变量的声明,初始化与应用

7、变量的作用域

8、变量重名

9、基本数据类型

10、类型转换与类型提升

11、各种数据类型使用细节

12、转义序列

13、各种运算符的使用

流程控制

1、选择控制语句if-else

2、选择控制语句switch-case

3、循环控制语句while

4、循环控制语句do-while

5、循环控制语句for与增强型for

6、break,continue,return

7、循环标签

8、数组的声明与初始化

9、数组内存空间分配

10、栈与堆内存

11、二维(多维)数组

12、Arrays类的相关方法

13、main方法命令行参数

面向对象

1、面向对象的基本思想

2、类与对象

3、成员变量与默认值

4、方法的声明,调用

5、参数传递和内存图

6、方法重载的概念

7、调用原则与重载的优势

8、构造器声明与默认构造器

9、构造器重载

10、this关键字的使用

11、this调用构造器原则

12、实例变量初始化方式

13、可变参数方法

访问权限控制

1、包 package和库

2、访问权限修饰符private/protected/public/包访问权限

3、类的访问权限

4、抽象类和抽象方法

5、接口和实现

6、解耦

7、Java的多重继承

8、通过继承来扩展接口

错误和异常处理

1、概念:错误和异常

2、基本异常

3、捕获异常 catch

4、创建自定义异常

5、捕获所有异常

6、Java标准异常

7、使用finally进行清理

8、异常的限制

9、构造器

10、异常匹配

11、异常使用指南

数据库基础(MySQL)

数据库基础(MySQL)

JDBC

1、Jdbc基本概念

2、使用Jdbc连接数据库

3、使用Jdbc进行crud操作

4、使用Jdbc进行多表操作

5、Jdbc驱动类型

6、Jdbc异常和批量处理

7、Jdbc储存过程

Servlet和P

1、Servlet简介

2、Request对象

3、Response对象

4、转发和重定向

5、使用Servlet完成Crud

6、Session和Coolie简介

7、ServletContext和Jsp

8、El和Jstl的使用

Ajax

1、什么是Ajax

2、XMLHttpRequest对象(XHR)

3、XHR请求

4、XHR响应

5、readystate/onreadystatechange

6、Jquery Ajax

7、ON

8、案例:对用户名是否可用进行服务器端校验

综合案例

1、项目开发一般流程介绍

2、模块化和分层

3、DButils

4、QueryRunner

5、ResultSetHandle

6、案例:用户登录/注册,从前端到后端

第二阶段 Java SE

访问权限和继承

1、包的声明与使用

2、import与import static

3、访问权限修饰符

4、类的封装性

5、static(静态成员变量)

6、final(修饰变量,方法)

7、静态成员变量初始化方式

8、类的继承与成员继承

9、super的使用

10、调用父类构造器

11、方法的重写与变量隐藏

12、继承实现多态和类型转换

13、instanceof

抽象类与接口

1、抽象类

2、抽象方法

3、继承抽象类

4、抽象类与多态

5、接口的成员

6、静态方法与默认方法

7、静态成员类

8、实例成员类

9、局部类

10、匿名类

11、eclipse的使用与调试

12、内部类对外围类的访问关系

13、内部类的命名

Lambda表达式与常用类

1、函数式接口

2、Lambda表达式概念

3、Lambda表达式应用场合

4、使用案例

5、方法引用

6、枚举类型(编译器的处理)

7、包装类型(自动拆箱与封箱)

8、String方法

9、常量池机制

10、String讲解

11、StringBuilder讲解

12、Math,Date使用

13、Calendars使用

异常处理与泛型

1、异常分类

2、try-catch-finally

3、try-with-resources

4、多重捕获multi-catch

5、throw与throws

6、自定义异常和优势

7、泛型背景与优势

8、参数化类型与原生类型

9、类型推断

10、参数化类型与数组的差异

11、类型通配符

12、自定义泛型类和类型擦出

13、泛型方法重载与重写

1 、常用数据结构

2 、Collection接口

3 、List与Set接口

4 、SortedSet与NavigableSet

5 、相关接口的实现类

6 、Comparable与Comparator

7、Queue接口

8 、Deque接口

9 、Map接口

10、NavigableMap

11、相关接口的实现类

12、流操作(聚合操作)

13、Collections类的使用

I/O流与反射

1 、File类的使用

2 、字节流

3 、字符流

4 、缓存流

5 、转换流

6 、数据流

7、对象流

8、类加载,链接与初始化

9 、ClassLoader的使用

10、Class类的使用

11、通过反射调用构造器

12、安全管理器

网络编程模型与多线程

1、进程与线程

2、创建线程的方式

3、线程的相关方法

4、线程同步

5、线程死锁

6、线程协作操作

7、计算机网络(IP与端口)

8、TCP协议与UDP协议

9、URL的相关方法

10、访问网络资源

11、TCP协议通讯

12、UDP协议通讯

13、广播

S-Spring

1.Spring/Spring MVC

2.创建Spring MVC项目

3.Spring MVC执行流程和参数

S-Spring.IOC

1.Spring/Spring MVC

2.创建Spring MVC项目

3.Spring MVC执行流程和参数

S-Spring.AOP

1.Spring/Spring MVC

2.创建Spring MVC项目

3.Spring MVC执行流程和参数

S-Spring.Mybatis

1.MyBatis简介

2.MyBatis配置文件

3.用MyBatis完成CRUD

4.ResultMap的使用

5.MyBatis关联查询

6.动态SQL

7.MyBatis缓冲

8.MyBatis-Generator

Socket编程

1.网络通信和协议

2.关于Socket

3.Java Socket

4.Socket类型

5.Socket函数

6.WebSocket

7.WebSocket/Spring MVC/WebSocket Ajax

IO/异步

window对象

全局作用域

窗口关系及框架

窗口位置和大小

打开窗口

间歇调用和超时调用(灵活运用)

系统对话框

location对象

navigator对象

screen对象

history对象

NIO/AIO

1.网络编程模型

2.BIO/NIO/AIO

3.同步阻塞

4.同步非阻塞

5.异步阻塞

6.异步非阻塞

7.NIO与AIO基本操作

8.高性能IO设计模式

第三阶段 Java 主流框架

MyBatis

1.mybatis框架原理分析

2.mybatis框架入门程序编写

3.mybatis和hibernate的本质区别和应用场景

4.mybatis开发dao方法

5.SqlMapConfig配置文件讲解

6.输入映射-pojo包装类型的定义与实现

7.输出映射-resultType、resultMap

8.动态sql

9.订单商品数据模型分析

10.高级映射的使用

11.查询缓存之一级缓存、二级缓存

12.mybatis与spring整合

13. mybatis逆向工程自动生成代码

Spring/Spring MVC

1. springmvc架构介绍

2. springmvc入门程序

3. spring与mybatis整合

4. springmvc注解开发—商品修改功能分析

5. springmvc注解开发—RequestMapping注解

6. springmvc注解开发—Controller方法返回值

7. springmvc注解开发—springmvc参数绑定过程分析

8. springmvc注解开发—springmvc参数绑定实例讲解

9. springmvc与struts2的区别

10. springmvc异常处理

11. springmvc上传图片

12. springmvc实现json交互

13. springmvc对RESTful支持

14. springmvc拦截器

第四阶段 关系型数据库/MySQL/NoSQL

SQL基础

1.SQL及主流产品

2.MySQL的下载与安装(sinux/windows)

3.MySql的基本配置/配置文件

4.基本的SQL操作 DDL

5.基本的SQL操作 DML

6.基本的SQL操作 DCL

7.MySQL客户端工具

8.MySQL帮助文档

MySQL数据类型和运算符

1 数值类型

2 日期时间类型

3 字符串类型

4 CHAR 和 VARCHAR 类型

5 BINARY 和 VARBINARY 类型

6 ENUM 类型

7 SET 类型

8 算术运算符

9 比较运算符

10 逻辑运算符

11 位运算

12 运算符的优先级

MySQL函数

1 字符串函数

2 数值函数

3 日期和时间函数

4 流程函数

5 其他常用函数

MySQL存储引擎

1.MySQL支持的存储引擎及其特性

2.MyISAM

3.InnoDB

4.选择合适的存储引擎

选择合适的数据类型

1 CHAR 与 VARCHAR

2 TEXT 与 BLOB

3 浮点数与定点数

4 日期类型选择

字符集

1 字符集概述

2 Unicode字符集

3 汉字及一些常见字符集

4 选择合适的字符集

5 MySQL 支持的字符集

6 MySQL 字符集的设置 .

索引的设计和使用

1.什么是索引

2.索引的类型

3.索引的数据结构 ree B+Tree Hash

4.索引的存储

5.MySQL索引

6.查看索引的使用情况

7.索引设计原则

视图/存储过程/函数/触发器

1. 什么是视图

2. 视图操作

3. 什么是存储过程

4. 存储过程操作

5. 什么是函数

6. 函数的相关操作

7. 触发器

事务控制/锁

1. 什么是事务

2. 事务控制

3. 分布式事务

4. 锁/表锁/行锁

5. InnoDB 行锁争用

6. InnoDB 的行锁模式及加锁方法7

7 InnoDB 行锁实现方式7

8 间隙锁(Next-Key 锁)

9 恢复和复制的需要,对 InnoDB 锁机制的影响

10 InnoDB 在不同隔离级别下的一致性读及锁的差异

11 表锁

12 死锁

SQL Mode和安全问题

1. 关于SQL Mode

2. MySQL中的SQL Mode

3. SQL Mode和迁移

4. SQL 注入

5. 开发过程中如何避免SQL注入

SQL优化

1.通过 show status 命令了解各种 SQL 的执行频率

2. 定位执行效率较低的 SQL 语句

3. 通过 EXPLAIN 分析低效 SQL 的执行计划

4. 确定问题并采取相应的优化措施

5. 索引问题

6.定期分析表和检查表

7.定期优化表

8.常用 SQL 的优化

MySQL数据库对象优化

1. 优化表的数据类型

2 散列化

3 逆规范化

4 使用中间表提高统计查询速度

5. 影响MySQL性能的重要参数

6. 磁盘I/O对MySQL性能的影响

7. 使用连接池

8. 减少MySQL连接次数

9. MySQL负载均衡

MySQL集群

MySQL管理和维护

MemCache

Redis

在Java项目中使用MemCache和Redis

第五阶段:操作系统/Linux、云架构

Linux安装与配置

1、安装Linux至硬盘

2、获取信息和搜索应用程序

3、进阶:修复受损的Grub

4、关于超级用户root

5、依赖发行版本的系统管理工具

6、关于硬件驱动程序

7、进阶:配置Grub

系统管理与目录管理

1、Shell基本命令

2、使用命令行补全和通配符

3、find命令、locate命令

4、查找特定程序:whereis

5、Linux文件系统的架构

6、移动、复制和删除

7、文件和目录的权限

8、文件类型与输入输出

9、vmware介绍与安装使用

10、网络管理、分区挂载

用户与用户组管理

1、软件包管理

2、磁盘管理

3、高级硬盘管理RAID和LVM

4、进阶:备份你的工作和系统

5、用户与用户组基础

6、管理、查看、切换用户

7、/etc/…文件

8、进程管理

9、linux VI编辑器,awk,cut,grep,sed,find,unique等

Shell编程

1、 SHELL变量

2、传递参数

3、数组与运算符

4、SHELL的各类命令

5、SHELL流程控制

6、SHELL函数

7、SHELL输入/输出重定向

8、SHELL文件包含

服务器配置

1、系统引导

2、管理守护进程

3、通过xinetd启动SSH服务

4、配置inetd

5、Tomcat安装与配置

6、MySql安装与配置

7、部署项目到Linux

第六阶段:Hadoop生态系统

Hadoop基础

1、大数据概论

2、 Google与Hadoop模块

3、Hadoop生态系统

4、Hadoop常用项目介绍

5、Hadoop环境安装配置

6、Hadoop安装模式

7、Hadoop配置文件

HDFS分布式文件系统

1、认识HDFS及其HDFS架构

2、Hadoop的RPC机制

3、HDFS的HA机制

4、HDFS的Federation机制

5、 Hadoop文件系统的访问

6、JavaAPI接口与维护HDFS

7、HDFS权限管理

8、hadoop伪分布式

Hadoop文件I/O详解

1、Hadoop文件的数据结构

2、 HDFS数据完整性

3、文件序列化

4、Hadoop的Writable类型

5、Hadoop支持的压缩格式

6、Hadoop中编码器和解码器

7、 gzip、LZO和Snappy比较

8、HDFS使用shell+Java API

MapReduce工作原理

1、MapReduce函数式编程概念

2、 MapReduce框架结构

3、MapReduce运行原理

4、Shuffle阶段和Sort阶段

5、任务的执行与作业调度器

6、自定义Hadoop调度器

7、 异步编程模型

8、YARN架构及其工作流程

MapReduce编程

1、WordCount案例分析

2、输入格式与输出格式

3、压缩格式与MapReduce优化

4、辅助类与Streaming接口

5、MapReduce二次排序

6、MapReduce中的Join算法

7、从MySQL读写数据

8、Hadoop系统调优

Hive数据仓库工具

1、Hive工作原理、类型及特点

2、Hive架构及其文件格式

3、Hive操作及Hive复合类型

4、Hive的JOIN详解

5、Hive优化策略

6、Hive内置操作符与函数

7、Hive用户自定义函数接口

8、Hive的权限控制

Hive深入解读

1 、安装部署Sqoop

2、Sqoop数据迁移

3、Sqoop使用案例

4、深入了解数据库导入

5、导出与事务

6、导出与SequenceFile

7、Azkaban执行工作流

Sqoop与Oozie

1 、安装部署Sqoop

2、Sqoop数据迁移

3、Sqoop使用案例

4、深入了解数据库导入

5、导出与事务

6、导出与SequenceFile

7、Azkaban执行工作流

Zookeeper详解

1、Zookeeper简介

2、Zookeeper的下载和部署

3、Zookeeper的配置与运行

4、Zookeeper的本地模式实例

5、Zookeeper的数据模型

6、Zookeeper命令行操作范例

7、storm在Zookeeper目录结构

NoSQL、HBase

1、HBase的特点

2、HBase访问接口

3、HBase存储结构与格式

4、HBase设计

5、关键算法和流程

6、HBase安装

7、HBase的SHELL操作

8、HBase集群搭建

第七阶段:Spark生态系统

Spark

1.什么是Spark

2.Spark大数据处理框架

3.Spark的特点与应用场景

4.Spark SQL原理和实践

5.Spark Streaming原理和实践

6.GraphX SparkR入门

7.Spark的监控和调优

Spark部署和运行

1.WordCount准备开发环境

2.MapReduce编程接口体系结构

3.MapReduce通信协议

4.导入Hadoop的JAR文件

5.MapReduce代码的实现

6.打包、部署和运行

7.打包成JAR文件

Spark程序开发

1、启动Spark Shell

2、加载text文件

3、RDD操作及其应用

4、RDD缓存

5、构建Eclipse开发环境

6、构建IntelliJ IDEA开发环境

7、创建SparkContext对象

8、编写编译并提交应用程序

Spark编程模型

1、RDD特征与依赖

2、(数组)创建RDD

3、存储创建RDD

4、RDD转换 执行 控制操作

5、广播变量

6、累加器

作业执行解析

1、Spark组件

2、RDD视图与DAG图

3、基于Standalone模式的Spark架构

4、基于YARN模式的Spark架构

5、作业事件流和调度分析

6、构建应用程序运行时环境

7、应用程序转换成DAG

Spark SQL与DataFrame

1、Spark SQL架构特性

2、DataFrame和RDD的区别

3、创建操作DataFrame

4、RDD转化为DataFrame

5、加载保存操作与Hive表

6、Parquet文件ON数据集

7、分布式的SQL Engine

8、性能调优 数据类型

深入Spark Streaming

1、Spark Streaming工作原理

2、DStream编程模型

3、Input DStream

4、DStream转换 状态 输出

5、优化运行时间及内存使用

6、文件输入源

7、基于Receiver的输入源

8、输出操作

Spark MLlib与机器学习

1、机器学习分类级算法

2、Spark MLlib库

3、MLlib数据类型

4、MLlib的算法库与实例

5、ML库主要概念

6、算法库与实例

GraphX与SparkR

1、Spark GraphX架构

2、GraphX编程与常用图算法

3、GraphX应用场景

4、SparkR的工作原理

5、R语言与其他语言的通信

6、SparkR的运行与应用

7、R的DataFrame操作方法

8、SparkR的DataFrame

Scala编程开发

1、Scala语法基础

2、idea工具安装

3、maven工具配置

4、条件结构、循环、高级for循环

5、数组、映射、元组

6、类、样例类、对象、伴生对象

7、高阶函数与函数式编程

Scala进阶

1、 柯里化、闭包

2、模式匹配、偏函数

3、类型参数

4、协变与逆变

5、隐式转换、隐式参数、隐式值

6、Actor机制

7、高级项目案例

Python编程

1、Python编程介绍

2、Python的基本语法

3、Python开发环境搭建

4、Pyhton开发Spark应用程序

第八阶段:Storm生态系统

storm简介与基本知识

1、storm的诞生诞生与成长

2、storm的优势与应用

3、storm基本知识概念和配置

4、序列化与容错机制

5、可靠性机制—保证消息处理

6、storm开发环境与生产环境

7、storm拓扑的并行度

8、storm命令行客户端

Storm拓扑与组件详解

1、流分组和拓扑运行

2、拓扑的常见模式

3、本地模式与stormsub的对比

4、 使用非jvm语言操作storm

5、hook、组件基本接口

6、基本抽象类

7、事务接口

8、组件之间的相互关系

spout详解 与bolt详解

1、spout获取数据的方式

2、常用的spout

3、学习编写spout类

4、bolt概述

5、可靠的与不可靠的bolt

6、复合流与复合anchoring

7、 使用其他语言定义bolt

8、学习编写bolt类

storm安装与集群搭建

1、storm集群安装步骤与准备

2、本地模式storm配置命令

3、配置hosts文件、安装jdk

4、zookeeper集群的搭建

5、部署节点

6、storm集群的搭建

7、zookeeper应用案例

8、Hadoop高可用集群搭建

Kafka

1、Kafka介绍和安装

2、整合Flume

3、Kafka API

4、Kafka底层实现原理

5、Kafka的消息处理机制

6、数据传输的事务定义

7、Kafka的存储策略

Flume

1、Flume介绍和安装

2、Flume Source讲解

3、Flume Channel讲解

4、Flume Sink讲解

5、flume部署种类、流配置

6、单一代理、多代理说明

7、flume selector相关配置

Redis

1、Redis介绍和安装、配置

2、Redis数据类型

3、Redis键、字符串、哈希

4、Redis列表与

5、Redis事务和脚本

6、Redis数据备份与恢复

7、Redis的SHELL操作

一、基础部分:JAVA语言 和 LINUX系统

二、数据开发:

1、数据分析与挖掘

一般工作包括数据清洗,执行分析和数据可视化。学习Python、数据库、网络爬虫、数据分析与处理等。

大数据培训一般是指大数据开发培训。

大数据技术庞大复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。

2、大数据开发

数据工du程师建设和优化系统。学习hadoop、spark、storm、超zhi大集群调优、机器学习、Docker容器引擎、ElasticSearch、并发编程等;

课程学习一共分为六个阶段:

大数据培训到底是培训什么?大数据是现在比较主流的一个岗位,主要工作内容是进行数据分析、运营、管理,如果要学习大数据就一点要先学会有一个营销的思维去思考这些数据我们有什么用我们可以通过这些数据得到什么,这样的话我们就需要学习网络营销、主流的数据分析软件以及运营维护管理的能力,但是学习过程还是比较辛苦的。

大数据培训,目前主要有两种:

1、大数据开发

数据工程师建设和优化系统。学习hadoop、spark、storm、超大集群调优、机器学习、Docker容器引擎、ElasticSearch、并发编程等;

2、数据分析与挖掘

一般工作包括数据清洗,执行分析和数据可视化。学习Python、数据库、网络爬虫、数据分析与处理等。

大数据培训一般是指大数据开发培训。

大数据技术庞大复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。

关于数据库培训班的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

© 版权声明
THE END
喜欢就支持一下吧
点赞20 分享